CHOMSKY \& GReneacu
NORMAL FORMS
Hector Miguel Chavez
Western Michigan University

Presentation Outline

- Introduction
- Chomsky normal form
- Preliminary simplifications
- Final steps
- Greibach Normal Form
- Algorithm (Example)
- Summary

Introduction

Grammar: $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$

Terminals $\quad T=\{a, b\}$
Variables $\quad V=A, B, C$

Start Symbol
 Production
 $P=S \rightarrow A$

Introduction

Grammar example
$\mathrm{S} \rightarrow \mathrm{aBSc}$
$\mathrm{S} \rightarrow \mathrm{abc}$
$\mathrm{Ba} \rightarrow \mathrm{aB}$
$\mathrm{Bb} \rightarrow \mathrm{bb}$

$S \Longrightarrow \mathrm{BSc} \Longrightarrow \mathrm{aBabcc} \Longrightarrow a \mathrm{Bb} c \mathrm{c} \Longrightarrow \mathrm{abbcc}$

Introduction

Context free grammar

The head of any production contains only one non-terminal symbol

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{P} \\
& \mathrm{P} \rightarrow \mathrm{aPb} \\
& \mathrm{P} \rightarrow \varepsilon
\end{aligned}
$$

$$
L=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

Presentation Outline

- Introduction
- Chomsky normal form
- Preliminary simplifications
- Final simplification
- Greibach Normal Form
- Algorithm (Example)
- Summary

Chomsky Normal Form

A context free grammar is said to be in Chomsky Normal Form if all productions are in the following form:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{BC} \\
& \mathrm{~A} \rightarrow \alpha
\end{aligned}
$$

- A, B and C are non terminal symbols
- α is a terminal symbol

Presentation Outline

- Introduction
- Chomsky normal form
- Preliminary simplifications
- Final steps
- Greibach Normal Form
- Algorithm (Example)
- Summary

Preliminary Simplifications

There are three preliminary simplifications

$1 \begin{gathered}\text { Eliminate Useless } \\ \text { Symbols }\end{gathered}$

2 Eliminate ε productions
3
Eliminate unit productions

Preliminary Simplifications

Eliminate Useless Symbols
We need to determine if the symbol is useful by identifying if a symbol is generating and is reachable

- X is generating if $\mathrm{X} \stackrel{*}{\Rightarrow}$ for some terminal string ω.
- X is reachable if there is a derivation $X \xrightarrow{*} a X \beta$ for some α and β

Preliminary Simplifications

Example: Removing non-generating symbols

$$
\begin{array}{ll}
\begin{array}{ll}
S \rightarrow A B \\
a & \\
A \rightarrow b
\end{array} & \text { Initial CFL grammar } \\
\begin{array}{ll}
S \rightarrow A B \\
a & \\
A \rightarrow b
\end{array} & \text { Identify generating symbols } \\
\begin{array}{ll}
S \rightarrow a & \\
A \rightarrow b & \text { Remove non-generating }
\end{array}
\end{array}
$$

Preliminary Simplifications

Example: Removing non-reachable symbols

$S \rightarrow a$
$A \rightarrow b$
Identify reachable symbols
$S \rightarrow a$
Eliminate non-reachable

Preliminary Simplifications

The order is important.

Looking first for non-reachable symbols and then for non-generating symbols can still leave some useless symbols.

$$
\begin{aligned}
& S \rightarrow A B \\
& \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{~b}
\end{aligned}
$$

$S \rightarrow a$
$A \rightarrow b$

Preliminary Simplifications

Finding generating symbols

If there is a production $A \rightarrow \alpha$, and every symbol of α is already known to be generating. Then A is generating

a
$A \rightarrow b$

We cannot use $S \rightarrow A B$ because B has not been established to be generating

Preliminary Simplifications

Finding reachable symbols
S is surely reachable. All symbols in the body of a production with S in the head are reachable.

$$
S \rightarrow A B
$$

a
$A \rightarrow b$
In this example the symbols
$\{S, A, B, a, b\}$ are reachable.

Preliminary Simplifications

There are three preliminary simplifications

Preliminary Simplifications

Eliminate ε Productions

- In a grammar ε productions are convenient but not essential
- If L has a CFG, then $L-\{\varepsilon\}$ has a CFG

$$
A \stackrel{*}{\Longrightarrow} \varepsilon
$$

Nullable variable

Preliminary Simplifications

If A is a nullable variable

- Whenever A appears on the body of a production A might or might not derive ε

$$
\begin{aligned}
& S \rightarrow A S A \mid a B \\
& A \rightarrow B \mid S \\
& B \rightarrow b \mid \varepsilon
\end{aligned} \quad \text { Nullable: }\{A, B\}
$$

Preliminary Simplifications

Eliminate ε Productions

- Create two version of the production, one with the nullable variable and one without it
- Eliminate productions with ε bodies

$S \rightarrow$ ASA $|a B| A S|S A| S$
$\mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{S}$
$B \rightarrow b$

Preliminary Simplifications

Eliminate ε Productions

- Create two version of the production, one with the nullable variable and one without it
- Eliminate productions with ε bodies

$A \rightarrow B \mid S$
$B \rightarrow b$

Preliminary Simplifications

Eliminate ε Productions

- Create two version of the production, one with the nullable variable and one without it
- Eliminate productions with ε bodies

$S \rightarrow A S A|a B| A S|S A| S \mid$
$a \rightarrow B \mid S$
$B \rightarrow b$

Preliminary Simplifications

There are three preliminary simplifications

Preliminary Simplifications

Eliminate unit productions
A unit production is one of the form $A \rightarrow B$ where both A and B are variables

Identify unit pairs

$$
A \stackrel{*}{\Longrightarrow} B
$$

$A \rightarrow B, B \rightarrow \omega$, then $A \rightarrow \omega$

Preliminary Simplifications

Example:
$T=\left\{{ }^{*},+,(), a, b, 0,1,\right\}$
$\mathrm{I} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{la}|\mathrm{Ib}| \mathrm{IO} \mid \mathrm{II}$
$\mathrm{F} \rightarrow \mathrm{I} \mid \mathrm{E})$
$\mathrm{T} \rightarrow \mathrm{F} \mid \mathrm{T}^{*} \mathrm{~F}$
$\mathrm{E} \rightarrow \mathrm{T} \mid \mathrm{E}+\mathrm{T}$

Basis: (A, A) is a unit pair of any variable A, if
$A \xrightarrow{*} A$ by 0 steps.

Pairs	Productions
(E, E)	$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
(E, T)	$\mathrm{E} \rightarrow \mathrm{T}^{*} \mathrm{~F}$
(E, F)	$\mathrm{E} \rightarrow(\mathrm{E})$
(E, I)	$\mathrm{E} \rightarrow \mathrm{a}\|\mathrm{b}\| \mathrm{la}\|\mathrm{Ib}\| \mathrm{IO} \mid \mathrm{II}$
(T, T)	$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~F}$
$(\mathrm{~T}, \mathrm{~F})$	$\mathrm{T} \rightarrow(\mathrm{E})$
(T, I)	$\mathrm{T} \rightarrow \mathrm{a}\|\mathrm{b}\| \mathrm{la}\|\mathrm{lb}\| \mathrm{IO} \mid \mathrm{IC}$
(F, F)	$\mathrm{F} \rightarrow(\mathrm{E})$
(F, I)	$\mathrm{F} \rightarrow \mathrm{a}\|\mathrm{b}\| \mathrm{la}\|\mathrm{Ib}\| \mathrm{IO} \mid \mathrm{II}$
(I, I)	$\mathrm{I} \rightarrow \mathrm{a}\|\mathrm{b}\| \mathrm{la}\|\mathrm{Ib}\| \mathrm{IO} \mid \mathrm{IC}$

Preliminary Simplifications

Example:

Pairs	Productions
\ldots	\ldots
(\mathbf{T}, \mathbf{T})	$\mathbf{T} \rightarrow \mathbf{T} * \mathbf{F}$
(\mathbf{T}, \mathbf{F})	$\mathbf{T} \rightarrow \mathbf{(E)}$
(\mathbf{T}, \mathbf{I})	$\mathbf{T} \rightarrow \mathbf{a}\|\mathbf{b}\| \mathbf{l a}\|\mathbf{l b}\| \mathbf{I O} \mid \mathbf{I I}$
\ldots	\ldots

```
I ma | b | la | lb | IO | I1
E C E + T| T * F| (E )| a | b | la | |b | IO |
|
T }->\mp@subsup{\mathbf{T}}{}{*}\textrm{F}|(\textrm{E})|\textrm{a | b | la | lb | IO | I1
F -> (E)| a | b | la | |b | IO | I|
```


Presentation Outline

- Introduction
- Chomsky normal form
- Preliminary simplifications
- Final steps
- Greibach Normal Form
- Algorithm (Example)
- Summary

Final Simplification

Chomsky Normal Form (CNF)

Starting with a CFL grammar with the preliminary simplifications performed

1. Arrange that all bodies of length 2 or more to consists only of variables.
2. Break bodies of length 3 or more into a cascade of productions, each with a body consisting of two variables.

Final Simplification

Step 1: For every terminal α that appears in a body of length 2 or more create a new variable that has only one production.

```
E C E + T| T* F|(E)| a | b | la | lb | IO|I|
T->T*F|(E)| a | b | la | Ib | IO | II
F (E)| a | b | la | Ib | IO | I 
I C a | b | la | lb | IO|II
```

$$
\begin{aligned}
& \mathrm{E} \rightarrow \text { EPT | TMF | LER | a | b | IA | IB | IZ | IO } \\
& \mathrm{T} \rightarrow \text { TMF | LER | a | b | IA | IB | IZ | IO } \\
& F \rightarrow \text { LER | a | b|IA |IB|IZ|IO } \\
& I \rightarrow a|b| I A|I B| I Z \mid I O \\
& \mathrm{~A} \rightarrow \mathrm{a} \quad \mathrm{~B} \rightarrow \mathrm{~b} \quad \mathrm{Z} \rightarrow 0 \quad \mathrm{O} \rightarrow 1 \\
& \mathrm{P} \rightarrow+\mathrm{M} \rightarrow^{*} \quad \mathrm{~L} \rightarrow(\mathrm{R} \rightarrow)
\end{aligned}
$$

Final Simplification

Step 2: Break bodies of length 3 or more adding more variables
$\mathrm{E} \rightarrow \mathrm{EPT} \mid$ TMF | LER | a | b | IA | IB | IZ |
IO
$\mathrm{T} \rightarrow$ TMF | LER | a | b | IA | IB|IZ|IO
$\mathrm{F} \rightarrow \mathrm{LER}|\mathrm{a}| \mathrm{b}|\mathrm{IA}| \mathrm{IB}|\mathrm{IZ}| \mathrm{IO}$
$\mathrm{I} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{IA}|\mathrm{IB}| \mathrm{IZ} \mid \mathrm{IO}$
$\mathrm{A} \rightarrow \mathrm{aB} \rightarrow \mathrm{bZ} \rightarrow 0 \mathrm{O} \rightarrow 1$
$P \rightarrow+M \rightarrow{ }^{*} L \rightarrow(R \rightarrow)$

Presentation Outline

- Introduction
- Chomsky normal form
- Preliminary simplifications
- Final steps
- Greibach Normal Form
- Algorithm (Example)
- Summary

Greibach Normal Form

A context free grammar is said to be in Greibach Normal Form if all productions are in the following form:

$$
A \rightarrow \alpha X
$$

- A is a non terminal symbols
- α is a terminal symbol
- X is a sequence of non terminal symbols. It may be empty.

Presentation Outline

- Introduction
- Chomsky normal form
- Preliminary simplifications
- Final steps
- Greibach Normal Form
- Algorithm (Example)
- Summary

Greibach Normal Form

Example:
$S \rightarrow X A \mid B B$
$B \rightarrow b \mid S B$
$X \rightarrow b$
$A \rightarrow a$
$S=A_{1}$
$X=A_{2}$
$A=A_{3}$
$\mathrm{B}=\mathrm{A}_{4}$
New
Labels
$\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{3} \mid \mathrm{A}_{4} \mathrm{~A}_{4}$
$\mathrm{A}_{4} \rightarrow \mathrm{~b} \mid \mathrm{A}_{1} \mathrm{~A}_{4}$
$\mathrm{A}_{2} \rightarrow \mathrm{~b}$
$\mathrm{A}_{3} \rightarrow \mathrm{a}$

Updated CNF

Greibach Normal Form

Example:
$\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{3} \mid \mathrm{A}_{4} \mathrm{~A}_{4}$
First Step $\quad A_{i} \rightarrow A_{j} X_{k} \quad j>i$

X_{k} is a string of zero or more variables

$X \mathrm{~A}_{4} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{4}$

Greibach Normal Form

Example:

First Step $\quad A_{i} \rightarrow A_{j} X_{k} \quad j>i$
$\mathrm{A}_{4} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{4}$
$\mathrm{A}_{4} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}\left|\mathrm{~A}_{4} \mathrm{~A}_{4} \mathrm{~A}_{4}\right| \mathrm{b}$
$\mathrm{A}_{4} \rightarrow \mathrm{bA}_{3} \mathrm{~A}_{4} \quad\left|\mathrm{~A}_{4} \mathrm{~A}_{4} \mathrm{~A}_{4}\right| \mathrm{b}$
$A_{1} \rightarrow A_{2} A_{3} \mid A_{4} A_{4}$
$\mathrm{A}_{4} \rightarrow \mathrm{~b} \mid \mathrm{A}_{1} \mathrm{~A}_{4}$
$\mathrm{A}_{2} \rightarrow \mathrm{~b}$
$\mathrm{A}_{3} \rightarrow \mathrm{a}$

Greibach Normal Form

Example:

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{3} \mid \mathrm{A}_{4} \mathrm{~A}_{4} \\
& \mathrm{~A}_{4} \rightarrow \mathrm{bA}_{3} \mathrm{~A}_{4}\left|\mathrm{~A}_{4} \mathrm{~A}_{4} \mathrm{~A}_{4}\right| \mathrm{b} \\
& \mathrm{~A}_{2} \rightarrow \mathrm{~b} \\
& \mathrm{~A}_{3} \rightarrow \mathrm{a}
\end{aligned}
$$

Second Step

Eliminate Left Recursions

$\times \mathrm{A}_{4} \rightarrow \mathrm{~A}_{4} \mathrm{~A}_{4} \mathrm{~A}_{4}$

Greibach Normal Form

Example:

Second Step

Eliminate Left Recursions

$\mathrm{A}_{4} \rightarrow \mathrm{bA}_{3} \mathrm{~A}_{4}|\mathrm{~b}| \mathrm{bA}_{3} \mathrm{~A}_{4} \mathrm{Z} \mid \mathrm{bZ}$
$\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{3} \mid \mathrm{A}_{4} \mathrm{~A}_{4}$
$\mathrm{Z} \rightarrow \mathrm{A}_{4} \mathrm{~A}_{4} \mid \mathrm{A}_{4} \mathrm{~A}_{4} \mathrm{Z}$
$\mathrm{A}_{4} \rightarrow \mathrm{bA}_{3} \mathrm{~A}_{4}\left|\mathrm{~A}_{4} \mathrm{~A}_{4} \mathrm{~A}_{4}\right| \mathrm{b}$
$\mathrm{A}_{2} \rightarrow \mathrm{~b}$
$\mathrm{A}_{3} \rightarrow \mathrm{a}$

Greibach Normal Form

Example:

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{3} \mid \mathrm{A}_{4} \mathrm{~A}_{4} \\
& \mathrm{~A}_{4} \rightarrow \mathrm{bA}_{3} \mathrm{~A}_{4}|\mathrm{~b}| \mathrm{bA}_{3} \mathrm{~A}_{4} \mathrm{Z} \mid \mathrm{bZ} \\
& A \rightarrow \alpha X \\
& Z \rightarrow A_{4} A_{4} \mid A_{4} A_{4} Z \\
& \mathrm{~A}_{2} \rightarrow \mathrm{~b} \\
& \text { GNF }
\end{aligned}
$$

Greibach Normal Form

Example:

$$
\begin{aligned}
& A_{1} \rightarrow A_{2} A_{3} \mid A_{4} A_{4} \\
& A_{4} \rightarrow b A_{3} A_{4}|b| b A_{3} A_{4} Z \mid b Z \\
& Z \rightarrow A_{4} A_{4} \mid A_{4} A_{4} Z \\
& A_{2} \rightarrow b \\
& A_{3} \rightarrow a
\end{aligned}
$$

$$
\mathrm{A}_{1} \rightarrow \mathrm{bA}_{3}\left|\mathrm{bA}_{3} \mathrm{~A}_{4} \mathrm{~A}_{4}\right| \mathrm{bA}_{4}\left|\mathrm{bA}_{3} \mathrm{~A}_{4} \mathrm{ZA}_{4}\right| b \mathrm{bZA}_{4}
$$

$Z \rightarrow b A_{3} A_{4} A_{4}\left|b A_{4}\right| b A_{3} A_{4} Z A_{4}\left|b Z A_{4}\right| b A_{3} A_{4} A_{4}\left|b A_{4}\right| b A_{3} A_{4} Z A_{4} \mid b Z A_{4}$

Greibach Normal Form

Example:

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \mathrm{bA}_{3}\left|\mathrm{bA}_{3} \mathrm{~A}_{4} \mathrm{~A}_{4}\right| \mathrm{bA}_{4}\left|\mathrm{bA}_{3} \mathrm{~A}_{4} \mathrm{ZA}_{4}\right| \mathrm{bZA}_{4} \\
& \mathrm{~A}_{4} \rightarrow \mathrm{bA}_{3} \mathrm{~A}_{4}|\mathrm{~b}| \mathrm{bA}_{3} \mathrm{~A}_{4} \mathrm{Z} \mid \mathrm{bZ} \\
& \mathrm{Z} \rightarrow \mathrm{bA}_{3} \mathrm{~A}_{4} \mathrm{~A}_{4}\left|\mathrm{bA}_{4}\right| \mathrm{bA}_{3} \mathrm{~A}_{4} \mathrm{ZA}_{4}\left|b Z A_{4}\right| \mathrm{bA}_{3} A_{4} A_{4}\left|\mathrm{bA}_{4}\right| \mathrm{bA}_{3} A_{4} \mathrm{ZA}_{4} \mid \mathrm{bZA} \\
& \mathrm{~A}_{2} \\
& \mathrm{~A}_{3} \rightarrow \mathrm{~b}
\end{aligned}
$$

Grammar in Greibach Normal Form

Presentation Outline

Summary (Some properties)

- Every CFG that doesn't generate the empty string can be simplified to the Chomsky Normal Form and Greibach Normal Form
- The derivation tree in a grammar in CNF is a binary tree
- In the GNF, a string of length n has a derivation of exactly n steps
- Grammars in normal form can facilitate proofs
- CNF is used as starting point in the algorithm CYK

Presentation Outline

References

[1] Introduction to Automata Theory, Languages and Computation, John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, 2nd edition, Addison Wesley 2001 (ISBN: 0-201-44124-1)
[2] CS-311 HANDOUT, Greibach Normal Form (GNF), Humaira Kamal, http://suraj.lums.edu.pk/~cs311w02/GNF-handout.pdf
[3] Conversion of a Chomsky Normal Form Grammar to Greibach Normal Form, Arup Guha, http://www.cs.ucf.edu/courses/cot4210/spring05/lectures/Lec14Greibac h.ppt

Test Questions

1. Convert the following grammar to the Chomsky Normal Form.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{P} \\
& \mathrm{P} \rightarrow \mathrm{aPb} \mid \varepsilon
\end{aligned}
$$

2. Is the following grammar context-free?

$$
\begin{aligned}
& S \rightarrow a B S c \mid a b c \\
& \mathrm{Ba} \rightarrow \mathrm{aB} \\
& \mathrm{Bb} \rightarrow \mathrm{bb}
\end{aligned}
$$

3. Prove that the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not context-free.
4. Convert the following grammar to the Greibach Normal Form.

$$
\begin{aligned}
& S->a|C D| C S \\
& A->a|b| S S \\
& C->a \\
& D->A S
\end{aligned}
$$

